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WING W l T H  UNS" QUAR'DR-CHORD LINE, ASPECT RATIO 4, 

TAPER RATIO 0.6, AmD mACA 65~006 A I R F O I L  S E C T I O N  

By Alexander D. Hammond 

As part of an NACA research program, an investigation by the 
transonic-bump method through a Mach range of 0.7 to  1.13 has been made 
in  the Langley high-speed 7- by 10-foot  tunnel t o  determine the la t e ra l -  

various spans and spanwise locations. The w i n g  of the semispan fuselage- 
w i n g  combination had an unswept quarter-chord line, a taper   ra t io  of 0.6, 

b an  aspect  ratio of 4.0, and an NACA 65~006 si r fa i l  sec t ion   para l le l   to  . 
the free air stream: 

c control  characteristics of 30-percent-chord flap-type  controls having 

Rolling men te ,   p i t ch ing  moments, and l i f t  were obtained  through 
a small range of control  deflections. The maJority of the data are 
presented as control-effectiveness  parameters t o  show their   var ia t ion 
with Mach number. In the Mach number region of 0.80 t o  1.0, the  resul ts  
show a decided decrease Fn the l if t-effectiveness and aileron- 
effectiveness parameters and a relative  smaller  decrease  in  the negative 
d u e s  of the pitching-effectiveness  parameters. 

lbTTRODUCTION 

The need fo r  seroaynamic data in  the  transonic speed range has led 
t o  theestablishment of 89 integrated program f o r  transonic  research. 
As part  of  the NACA transonic  research  propem, a series of wlng-fuselage 
configurations having w i n g  plan form as the  chief  variable are being 
investigated in  the Langley high-speed 7- by 10-foot -tunnel by using  the 
transonic-bump method. 

I 
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. 
This paper presents the results of a lateral-control  investigation 

of a semispan wing-fuselage.mode1 employing a w i n g  with an unswept 
quarter-chord line, ea aspect  ratio of 4.0, taper   ra t io  of 0.6, and an 
NACA 65A006 airfoi l   sect ion parallel t o  the free air stream. The purpose 
of t h i s  investigation was to  obtain  lateral-control data with flap-type 
controls of 30 percent .chord, having various spm$"and spaTlwise l oca -  
t ions.  The refilts of a previous  investigation of the same wing-fuselage 
configuration  without  controls may be found in  reference 1. Data 
obtained i n  previous.lateral-control investigations of a series of wings 
having the same aspect  ratlo, taper rat io ,  and a i r fo i l   sec t ions   as  the 
w i n g  of the present  investigation and  having the quarter-chord l i ne  
sweptback 35O, 45O, and 60' are reported i n  references 2, 3, and 4, 
respectively. 

- 

. ." 

The semispan win@; had zero  angle of sweepback re fer red   to  the 
quarter-chord  line, a taper r a t i o  of 0.6, an aspect. r a t i o  of 4.0, and 
an NACA 65~006 airfoil   section  (reference 5 )  parallel t o  the f ree  air 
stream. The w i n g  was made of beryllium copper and the fuselage of 
brass. A two-view drawing of the model i s  presented i n  figure 1, and 
ordinates of the fuselage of finenesi r a t i o  10 caS be found i n  table I 
of reference 1. 

The controls  (aileron o r  f lap)  w e r e  made integral  w i t h  the wing by 
cutting grooves 0.03 Inch wide along the TO-percent-chord l i n e  on the  
upper and lower surfaces of the wipg (f ig .  2 ) .  The entire  control from 
fuselage t o  w i n g  t i p  w a s  divided  into four equal spanwise segments as 
shown i n  figure 2. After s e t t i n g  the cont ro l   a t  the desired deflection 
by bending the m e t a l  along the grooves, the groove8 and gaps were f i l l e d  
wi th  w a x ,  thus  giving a close approach t o  a 30-percent-chord sealed 
plain  flap-type  control  surface. 

The model was mounted on an electrical  strain-gage  balance  enclosed 
i n  the bump and the l i f t ,  pitching. maments, and rolling moments about 
the model plane of symmetry.were measured with a calibrated 
potentiometer. 

COEFFICIElJTS m SYMBOLS 

lifi coefficient ( Twice l i f t  of semispan model 
ss 

raUfng-moment coeff ic ient   a t  plane of symmetry corrected  for 

reflection-plane  effects moment of semisp  
qSb 
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uncorrected rolling-moment coefficient 

pitching-moment coefficient  referred-to O.25F 

(mice  pitching s= 
moment of sdspan 

effective dynamic pressure over span of model, pounds per 

twice wing area of semlspan model, 0.125 square  foot 

twfce span of semispan model, 0.707 foot 

local wing chord, f e e t  

spanwise afstesce from plane of symmetry 

spanwise distance from plane of symmetry t o  inboard end of 
control 

mass density of air, slugs per  cubic foot 

free-stream air velocity, feet   per  second 

effective Mach nlrmber over span of model 

average chordwise local Mach number 

local Mach  number 

Reynolds number of wing based on F 

angle of attack,  degrees 

control  deflection  relative t o  wing-chord plane, measured 
perpendicular to   control  hinge axis  (positive when 
t r a i l i n g  edge i s  down), degrees 

control span measured perpendicular t o  plane of symnetry 
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The subscript a Fndicates that the angle of attack was held 
constant. 

CORRFCTIONS 

The aileron-effectiveness  parameters herefn represent the aero- 
dymmic ef fec ts  on a complete wing produced by the defiection of the 
control on anly one semispan of the canrplete X i n g .  Reflection-plane 
corrections have been applied  to the aileron-effectiveness  parameters 
throughout the Mach range tested. The correction  factors which  were 
applied are given in figure 3.  The va,lues.of the correction  factors 
given in figure 3 were obtained from unpublished  experimental low-speed 
data and theoretical  considerations. Although the  corrections  are 
based on incompressible  conditions and are only  v a l i d  for the low Mach 
numbers, it waB believed that the results obtained by applying  the , 

corrections w o u l d  give a better representation of true  conditions than 
uncorrected data. 

The l i f t - e f f ed iveness  and pitching-effectiveness  parameters 
represent  the aeroaynamic effects  of deflection in the same direction 
of the  controls on both semispans of the cosrplete wing, and hence no 
reflection-plane  corrections-are  necessary for the lift and pitching- 
moment data. 

No corrections were applied f o r  any .twisting or deflection of the 
w i n g  or  controls caused by air load. However, based on s t a t i c  tests 
made on the  w i n g 6  of reference s 2 and 4 the e f fec ts  were believed to be 
negligible. 

The t e s t s  were made in the Langley high-speed 7- by 10-foot  tunnel 
by use of a n  adaptation of the NACA w i n g - f l o w  technique for obtaining 
transonic speeds. The technique  used  involves placing the model i n  the 
high-velocity f low f i e l d  generated over the curved  surface of a bump on 
the  tunnel  floor  (reference 6) . 



Typical  contours of loca l  Mach  number i n  the vicini ty  of the model 
location on the bump w i t h  model removed are shown in figure 4. The 
contours  indicate that there is a Mach number variation of about 0.05 
over the model semispan at  low Mach numbers and from 0.07 to. 0.08 at 
higher Mach numbers. The chordwise variation  is   generally less than 0.01. 
The effective Mach  number over the w i n g  semispan is  e s t k t e d  to be 0.02 
higher  than the effective Mach number where 50-percent-span outboard 
ailerons normally would be located. No attempt has been made t o  
evaluate the effects  of this  chordwise and spanwise Mach  number varia- 
t ion.  The long-daah lines near  the  root of  the wing in figure 4 indi- 
a t e  a l o c a l  Mach number 5 percent belaw the maximum value and represent 
the estFmated extent of the brmn, boundary layer. The effective test 
Mach  number was obtained from contour  charts similar t o  those  presented 
i n  figure 4 by using the relationship 

Force and moment data were obtained w i t h  controls of various spans 
thro a Mach number range of 0.70 t o  I. 15, an  angle-of -attack range 
of - y t o  60; and at control  deflections of Oo , 5O, and loo. The 
variation of Reynolds number w i t h  Mach number for these  tes ts  i s  shown 
i n  figure 5.  

RESULTS AlWJ DISCUSSIOR 

The variations of lift, rolling-moment, and pftching-moment 
coefficients w i t h  control  deflection up t o  10' for   the outboard 
43-percent-span control at a wing m e  of attack of 2O are  presented 
i n  figures 6 ,  7, and 8. Since  the w i n g  was symmetrical, data obtained 
at negative  angles of attack and posit ive  control  deflection were con- 
sidered, with due regard t o  signs, to be equivalent  to data that would 
be obtained at positive iingles of attack and negative  control  deflec- 
t ions and were plotted as such. The curves of figures 6 t o  8 are 
typical o f  the curves-of each of the other control  configurations 
tested. 

TIE control-effectiveness parameters of figures 9 t o  IL were 
obtained from figures 6 t o  8 and simflar plots  of the t e s t  data fo r  
the  various  control  configurations. The control-effectiveness f o r  all 
configurations had nearly linear m i a t i o n  with control  deflection  for 
the  deflection range of ,100, except in   the Mach number range from 0.85 ' 

t o  1.00. Because an insufficient nmiber of small deflections were 
t e s t e d   t o  obtain the slope near  zero  deflection, the effectiveness 

7 
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parameters were determined from average slopes  through the deflection 
range of *loo f o r  all Mach numbers. 

A marked decrease in   a i le ron  asd l i f t  effectiveness occur6 between 
Mach numbers of 0.80 and 1.0 and a smaller  decrease in the negative 
values of pitching-effectiveness parameter  occurs i n  the same Mach 
number region (figs. 9 to u). 

The effectiveness of controls of  various spans starting st the 
t i p   ( f i g .  12) i n a c a t e s  that the outboard  21-percent-span control glves 
high  aileron  effectiveness when compared t o  an inboard  control of the 
same spas. Althou@;h there  are  considerable  differences in aileron 
effectiveness  for a given span control with increasing Mach number, i n  
general the curves have the same shape. This wcmld indicate that the 
relative effectiveness of a partial-span  control  to a full-span  control 
i s  l i t t l e  affected by Mach number. On the  other hand, the pitching- 
effectiveness  data  (figs. l l  and 1 2 )  indicate  greater  relative loss i n  
effectiveness at supersonic Mch numbers f o r  controls near thd w i n g  t i p  

. than for controls  near the root. 

The experimental values of Czg for  M = 0.70 and 0.80 are 
compared ( f ig .  13)  w i t h  the  theoretical  values of Czg f o r  M = 0.70 
estimated by means of the mthds of reference 7 and by modif'ying the 
wing geometric characterfstics and the rolling-moment coefficients for 
the effects  of cap res s ib i l i t y .  The ef fec ts  of compressibility on w i n g  
gemetric characterist ics were accounted for by the GLauert-Prandtl 
transformation  (reference 8) and the e f fec ts  of compressibility on the 
values of Cz8 were accounted fo r  by the following equation: 

where C is the alleron-effectiveness  parameter  estimated by the 

methods of reference 7 a f t e r  modifying the w i n g  geometric character- 
i s t i c s  by the  Glauert-Prandtl  transformati&;  -The"results- -show good 

26 

a agreement for  the controls-tested. 

Langley Aeronautical  Laboratory 
National Advisory Committee f o r  Aeronautics 

Langley Air Force Base, Va. 
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0 .2 .4 .6 .8 1.0 

Figure 3 . -  Reflection-plane correction factors for inboard and outboard 
controls of various spa- for  a wing of 0' of sweepback, aspect ratio 4, 
and taper   ra t io  of 0.6. m 
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figure 5.- Variation of test Reynolds number with Mach nmber for model with 0' mptback wing, aspect 9 
ra t io  4, taper ra t io  0.6, and HACA 63006 airfoil .  
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Figure 6.- ?ariation of lift coefficient with control deflection f o r  

various Mach numbers. b, = 0.43-, outboard; a = 2O. 
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Figure 7.- Variation of rolling-moment coefficient with control  Seflection 
for  various Mach numbers. b, = 0.43-, outboard; a = 2O. 
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Figure.  8. - Variation of pitching-moment c o e f f k i e n t  with control. deflect ion 

f o r  various Mach numbers. b, .= 0. k%, outboard; a = 2O. b 
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Figure 9.- Variation of l if teffectiveness parmeter with Mach number. 
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Figure 10.- Variation of aileron-effectiveness parameter with Mach number. 
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Figure 11.- Variation  of pitching-effectiveness parameter with Mach number. 
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Figure 12.- Variation of control-effectivenese  parameters  with  control 
span starting at the tip for  various Mach numbers. a = o0. 
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Figure 13.- Camparison of the experimental and estimated variation of 
aileron effectiveness with control epan. a = Oo. 
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